

Database Management Systems Lab

LIST OF EXPERIMENTS

1. Concept design with E-R Model

2. Relational Model

3. Normalization

4. Practicing DDL commands

5. Practicing DML commands

6. Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.)

7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.

8. Triggers (Creation of insert trigger, delete trigger, update trigger)

9. Procedures

10. Usage of Cursors

EXPERMENT 1: E-R model

Analyze the problem and come with the entities in it. Identify what Data has to be persisted in the databases. The

Following are the entities and its attributes.

a. Bus:

1. Bus_No: varchar (10) (primary key)

2. Source: varchar (20)

3. Destination: varchar (20)

b. Passenger:

 1. PNR_No: Number (9) (primary key)

2. Ticket_No: Number (9)

3. Name: varchar (15)

4. Age: integer (4)

5. Sex: char (10); Male/Female

6. P_PNO: varchar (15)

c. Reservation:

1. PNR_No : number(9) (foreign key)

2. Journey date : date

3. No_of_seats : integer(8)

4. Address : varchar(50)

5. Contact_No : Number(9)

6. Status : Char(2)

d. Cancellation:

1. PNR_No : number(9)(foreign key)

2. Journey_date : date

3. No_of_seats : integer(8)

4. Address : varchar(50)

5. Contact_No : Number(10)

6. Status : Char(2)

e. Ticket:

1. Ticket_No : number(9)(primary key)

2. Journey_date : date

3. Age : int(4)

4. Sex : Char(10)

5. Source : varchar(50)

6. Destination :varchar(50)

7. Dep_time : varchar(50)

The attributes in the Entities:

Relate the entities appropriately. Apply cardinalities for each relation

EXPERIMENT 2: Relational Model

Represent all entities in a tabular fashion. Represent all relationships in a tabular fashion. The fallowing is

tabular representation of the above entities and relationships

BUS:

Bus_no

Source

Destination

TA07AZ6789 Hyderabad Goa

COLOUMN

NAME

DATA TYPE CONSTRAIN

T

Bus No varchar2(10) Primary Key

Source varchar2(20)

Destination varchar2(20)

PASSENGER:

Pnr_No

Ticket_no

Name

Age

Sex

P_PNO

7456558 TS1234568 Raj 35 Male 9898989000

COLOUMN NAME DATA TYPE CONSTRAINT

PNR No Number(9) Primary Key

Ticket No Number(9) Foreign key

Name varchar2(15)

Age integer(4)

Sex char(10) (Male/Female)

P_PNo Number(9) Should be equal to 10 numbers

and not allow other than

numeric

RESERVATION:

Pnr_No

Journey_date

No_of_seats

Address

Contact_No

Status

5458661
14-06-2023 2 LB Nagar 9845676659 CNF

COLOUMN NAME DATA TYPE CONSTRAINT

PNRNo number(9) Primary Key

Journey date Date

No-of-seats integer(8)

Address varchar2(50)

Contact No Number(9) Should be equal to 10

numbers and not allow other

than numeric

BusNo varchar2(10) Foreign key

Seat no Number(10)

CANCELLATION:

Pnr_No Journey_date No_of_seats Address Contact_No Status

5458661
14-06-2023 2 LB Nagar 9845676659 CNF

COLOUMN NAME DATA TYPE CONSTRAINT

PNR No Number(9) Foriegn-key

Journey-date Date

Address Varchar2(100)

Seat no Number(9)

Contact_No Number(9) Should be equal to 10 numbers

and not allow other than

numeric

 TICKET:

Ticket_

No

Journey_date Age sex source Destination Dep_time

COLOUMN NAME DATA TYPE CONSTRAINT

Ticket_No number(9) Primary Key

Journey date Date

Age Number(4)

Sex Varchar2(10)

Source varchar2(10)

Destination varchar2(10)

Dep-time varchar2(10)

Bus No Number2(10)

EXPERIMENT 3 . Normalization

Normalization is the process of minimizing redundancy from a relation or set of relations.

Redundancy in relation may cause insertion, deletion, and update anomalies. So, it helps to

minimize the redundancy in relations. Normal forms are used to eliminate or reduce

redundancy in database tables.

Introduction:

In database management systems (DBMS), normal forms are a series of guidelines that help to

ensure that the design of a database is efficient, organized, and free from data anomalies.

There are several levels of normalization, each with its own set of guidelines, known as normal

forms.

Example

We’ll be using a student database as an example in this article, which records student, class,

and teacher information.

Let’s say our student database looks like this:

Student

ID
Student Name

Fees

Paid
Course Name Class 1 Class 2 Class 3

1 John Smith 200 Economics
Economics

1
Biology 1

2 Maria Griffin 500
Computer

Science
Biology 1 Business Intro Programming 2

3 Susan Johnson 400 Medicine Biology 2

4 Matt Long 850 Dentistry

This table keeps track of a few pieces of information:

 The student names

 The fees a student has paid

 The classes a student is taking, if any

This is not a normalised table, and there are a few issues with this.

Insert Anomaly

An insert anomaly happens when we try to insert a record into this table without knowing all the

data we need to know. For example, if we wanted to add a new student but did not know their

course name.

The new record would look like this:

Student

ID

Student

Name

Fees

Paid
Course Name Class 1 Class 2 Class 3

1 John Smith 200 Economics
Economics

1
Biology 1

2 Maria Griffin 500
Computer

Science
Biology 1

Business

Intro

Programming

2

3 Susan Johnson 400 Medicine Biology 2

4 Matt Long 850 Dentistry

5
Jared

Oldham
0 ?

We would be adding incomplete data to our table, which can cause issues when trying to analyze

this data.

 Update Anomaly

An update anomaly happens when we want to update data, and we update some of the data but

not other data. For example, let’s say the class Biology 1 was changed to “Intro to Biology”. We

would have to query all of the columns that could have this Class field and rename each one that

was found.

Student ID Student Name Fees Paid Course Name Class 1 Class 2 Class 3

1 John Smith 200 Economics
Economics

1
Intro to

Biology

2 Maria Griffin 500 Computer Science
Intro to

Biology
Business Intro

Programming

2

3 Susan Johnson 400 Medicine Biology 2

4 Matt Long 850 Dentistry

There’s a risk that we miss out on a value, which would cause issues.

Ideally, we would only update the value once, in one location.

 Delete Anomaly

A delete anomaly occurs when we want to delete data from the table, but we end up deleting

more than what we intended.

For example, let’s say Susan Johnson quits and her record needs to be deleted from the system.

We could delete her row:

Student

ID
Student Name

Fees

Paid
Course Name Class 1 Class 2 Class 3

1 John Smith 200 Economics
Economics

1
Biology 1

2 Maria Griffin 500
Computer

Science
Biology 1

Business

Intro

Programming

2

3
Susan

Johnson
400 Medicine Biology 2

4 Matt Long 850 Dentistry

But, if we delete this row, we lose the record of the Biology 2 class, because it’s not stored

anywhere else. The same can be said for the Medicine course.

We should be able to delete one type of data or one record without having impacts on other

records we don’t want to delete.

Experiment 4: Practicing DDL commands

 To practice sql commands in computer use the following applications.

 Download the Oracle Application Server 10g or higher releases and install on computer.

 Download the Install SQL Server 2014 or higher releases and install on computer.

 Please make note that create user name and password where it is applicable.

CREATE It is used to create a new table in the database.

a) Passenger Table

Create table passenger (PNR_NO int(9) primary key , Ticket_NO int(9), Name

varchar(20), Age int(4), Sex char(10), PPNO varchar(15));

Desc Passenger;

b) Reservation Table

Create table reservation (PNR_NO int(9), No_of_seats int(8), Address

varchar(50), Contact_No int(9), Status char(3));

Desc Reservation;

c) Bus Table

Create table Bus (Bus_No varchar (5) primary key, source varchar (20), destination

varchar (20));

Desc Bus;

d) Cancellation Table

Create table cancellation (PNR_NO int(9), No_of_seats int(8), Address

varchar(50), Contact_No int(9), Status char(3));

Desc Cancellation;

e) Ticket Table

Create table ticket (Ticket_No int(9) primary key, age int(4), sex char(4) Not null, source

varchar(20),destination varchar(20), dep_time varchar(4));

Desc Ticket;

ALTER: It is used to alter the structure of the database. This change could be either to modify

the characteristics of an existing attribute or probably to add a new attribute.

Alter table Bus ADD (Bus_Model varchar2(20));

Desc Bus;

TRUNCATE: It is used to delete all the rows from the table and free the space containing the

table.

Truncate table Bus;

Desc bus;

DROP: It is used to delete both the structure and record stored in the table.

Drop table Bus;

Experiment 5: Practicing DML commands

DML commands are used to modify the database. It is responsible for all form of changes in the

database.

INSERT: The INSERT command is used to insert data into the row of a table.

Note: in previous experiment we created table structure now in this experiment we can insert

data into those tables.

PASSENGER:

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (1, 101,

'name_1', 13, 'm', 'pp01');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (2, 102,

'name_2', 14, 'f', 'pp02');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (3, 103,

'name_3', 15, 'm', 'pp03');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (4, 104,

'name_4', 16, 'f', 'pp04');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (5, 105,

'name_5', 17, 'm', 'pp05');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (6, 106,

'name_6', 18, 'f', 'pp06');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (7, 107,

'name_7', 19, 'm', 'pp07');

Result: 1row affected

INSERT INTO passenger (PNR_NO, Ticket_NO, Name, Age, Sex, PPNO) VALUES (8, 108,

'name_8', 20, 'f', 'pp08');

Result: 1row affected

Select * from passenger;

TICKET:

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (101, 13,

'm', 'src1', 'des1', '0830');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (102, 14,

'f', 'src2', 'des2', '1030');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (103, 15,

'm', 'src3', 'des3', '1230');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (104, 16,

'f', 'src4', 'des4', '1430');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (105, 17,

'm', 'src5', 'des5', '1630');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (106, 18,

'f', 'src6', 'des6', '1830');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (107, 19,

'm', 'src7', 'des7', '2030');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (108, 20,

'f', 'src8', 'des8', '2230');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (109, 21,

'm', 'src9', 'des9', '0030');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (110, 22,

'f', 'src10', 'des10', '0230');

Result: 1row affected

INSERT INTO ticket (Ticket_No, age, sex, source, destination, dep_time) VALUES (111, 22,

'f', 'src1', 'des1', '0830');

Result: 1row affected

Select * from ticket;

RESERVATION:

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (1,

1, 'adrs_1', 9891, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (2,

1, 'adrs_2', 9892, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (3,

1, 'adrs_3', 9893, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (4,

1, 'adrs_4', 9894, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (5,

1, 'adrs_5', 9895, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (6,

1, 'adrs_6', 9896, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (7,

3, 'adrs_7', 9897, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (8,

4, 'adrs_8', 9898, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES (9,

2, 'adrs_9', 9899, 's');

Result: 1row affected

INSERT INTO reservation (PNR_NO, No_of_seats, Address, Contact_No, status) VALUES

(10, 5, 'adrs_10', 98910, 's');

Result: 1row affected

Select * from reservation;

CANCELLATION:

INSERT INTO cancellation (PNR_NO, No_of_seats, Address, Contact_No, Status) VALUES

(2, 1, 'adrs_2', 9892, 'N');

Result: 1row affected

INSERT INTO cancellation (PNR_NO, No_of_seats, Address, Contact_No, Status) VALUES

(3, 1, 'adrs_3', 9893, 'N');

Result: 1row affected

Select * from cancellation;

UPDATE: This command is used to update or modify the value of a column in the table.

Update passenger set age='43' where PNR_NO='2';

Result: 1row affected

Select * from passenger;

DELETE: It is used to remove one or more row from a table.

delete from passenger where Name ='name_8';

Result: 1 row affected

Select * from passenger;

Experiment 6: Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION,

INTERSECT, Constraints etc.)

1. Display Unique PNR_NO of all Passengers?

Select PNR_NO from Passenger;

Result:

2. Display Ticket numbers and names of all Passengers?

Select Ticket_NO, Name from Passenger;

Result:

3. ALL

ALL means that the condition will be true only if the operation is true for all values in the

range.

SELECT ALL Name FROM passenger;

4. ANY

ANY means that the condition will be true if the operation is true for any of the values in

the range.

SELECT * FROM reservation where Contact_No=ANY(SELECT Contact_No FROM cancellation);

Result:

5. IN

The IN operator allows you to specify multiple values in a WHERE clause.

SELECT * FROM reservation where Contact_No IN (SELECT Contact_No FROM
cancellation);

RESULT:

6. EXISTS

The EXISTS operator is used to test for the existence of any record in a subquery.

it returns TRUE if the subquery returns one or more records.

SELECT * FROM reservation where EXISTS (SELECT Contact_No FROM cancellation where
Contact_No=9892);

Result:

7. NOT EXISTS

 NOT EXISTS allows locating records that don’t match the subquery.

SELECT * FROM cancellation where NOT EXISTS (SELECT Contact_No FROM reservation where
Contact_No=9890);

8. UNION

The UNION operator is used to combine the result-set of two or more SELECT statements.

The UNION operator selects only distinct values by default. To allow duplicate values,

use UNION ALL

SELECT Status FROM reservation UNION SELECT Status from cancellation;

9. INTERSECT

The INTERSECT is an operator in Structured Query Language that combines the rows of

two SELECT statements and returns only those rows from the first SELECT statement,

which are the same as the rows of the second SELECT statement.

SELECT Address FROM reservation INTERSECT SELECT Address from cancellation;

Experiment 7:. Queries using Aggregate functions, GROUP BY, HAVING and Creation and

dropping of Views.

SQL Aggregate Functions

SQL aggregation function is used to perform the calculations on multiple rows of a single column

of a table. It returns a single value.

COUNT FUNCTION

 COUNT function is used to Count the number of rows in a database table. It can work on

both numeric and non-numeric data types.

 COUNT function uses the COUNT(*) that returns the count of all the rows in a specified

table. COUNT(*) considers duplicate and Null.

select count(*) from passenger;

Result:

select count(Name) from passenger;

Result:

SUM Function

Sum function is used to calculate the sum of all selected columns. It works on numeric fields only.

select sum(Age) from passenger;

Result:

AVG function

The AVG function is used to calculate the average value of the numeric type. AVG function

returns the average of all non-Null values.

select avg(Age) from passenger;

Result:

MAX Function

MAX function is used to find the maximum value of a certain column. This function determines

the largest value of all selected values of a column.

select max(Age) from passenger;

Result:

MIN Function

MIN function is used to find the minimum value of a certain column. This function determines the

smallest value of all selected values of a column.

select min(Age) from passenger;

Result:

GROUP BY

In SQL, The Group By statement is used for organizing similar data into groups.

select count(Ticket_NO),Sex from passenger group by Sex;

Result:

HAVING

The HAVING is a keyword in SQL which selects the rows filtered by the GROUP BY keyword

based on the particular single or multiple conditions.

select Name, max(Age) from passenger group by Name having max(Age)>19;

Result:

SQL View

The View in the Structured Query Language is considered as the virtual table, which depends on

the result-set of the predefined SQL statement.

Like the SQL tables, Views also store data in rows and columns, but the rows do not have any

physical existence in the database.

Create a SQL View

You can easily create a View in Structured Query Language by using the CREATE VIEW

statement. You can create the View from a single table or multiple tables.

create view passenger_view as select Name, Age, Sex, Ticket_NO from passenger where

Age>16;

Result:

select * from passenger_view;

Result:

Create a View from Multiple tables

 Let us consider two tables passenger and reservation, we can use these two tables we can create

view from multiple talbes

create view passenger_reservation_view as select Name, Age, Sex, Ticket_NO,Address,

Contact_No from passenger,reservation;

Result:

Select * from passenger_reservation_view;

Result: (only practice it in lab its shows many rows and select colums)

Drop a View

We can also delete the existing view from the database if it is no longer needed. The following

SQL DROP statement is used to delete the view:

drop view passenger_reservation_view;

Result:

Select * from passenger_reservation_view;

Result:

Experiment 7: Triggers (Creation of insert trigger, delete trigger, update trigger)

Trigger in SQL

 A Trigger in Structured Query Language is a set of procedural statements which are executed

automatically when there is any response to certain events on the particular table in the database.

Triggers are used to protect the data integrity in the database.

Creating a Trigger table

create table stud (tid number(4), name varchar(20), subj1 number(2),subj2 number(2),subj3

number(2));

Result: Table is created

desc stud;(In sql use this command: exec sp_help stud;

Result:

insert into stud values(1, 'naresh', 50,60,70);

Result: 1 row effected

insert into stud values(2, 'suresh', 70,60,70);

Result: 1 row effected

insert into stud values(3, 'pallavi', 90,80,85);

Result: 1 row effected

insert into stud values(4, 'rohit', 96,87,85);

Result: 1 row effected

select * from stud;

Creating a Trigger backup table

create table stud_marks (tid number(4), name varchar(20), subj1 number(2),subj2 number(2),subj3

number(2));

Result: Table is created

desc stud_marks;

Now, we will create a trigger that stores student marks of each insert operation on the stud table

into the stud_marks. Here we are going to create the insert trigger using the below statement:

create or replace trigger t1

 before delete on stud

 for each row

 begin

 insert into stud_marks values(:old.tid, :old.name,:old.subj1,:old.subj2,:old.subj3);

 end;

 /

Result:

Now, delete one record from stud table by using delete command..

delete from stud where tid=4;

Result: 1 row deleted

Finally check the backup table(stud_marks) it will be updated missing data from stud_marks by

using trigger t1.

Select * from stud_marks;

Experiment 9: Procedures

A Procedure in PL/SQL is a subprogram unit that consists of a group of PL/SQL statements that

can be called by name. Each procedure in PL/SQL has its own unique name by which it can be

referred to and called. This subprogram unit in the Oracle database is stored as a database object.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE statement.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the

screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

Result:

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

Result:

 If we see hello world in the above output use command as set serveroutput on then execute it.

Example:

First create one emp table with name and salary then we can increment salary by using procedures.

create table emp (eid number(5) primary key, name varchar(20), sal number(10));

Result: table created

insert into emp values (1, 'ashwin', 10000);

Result: 1 row created.

insert into emp values (2,'bumrha', 12000);

Result: 1 row created.

insert into emp values (3,'dhoni', 15000);

Result: 1 row created.

Select * from emp;

Result:

Now, create a procedure query to increment salary.

 CREATE OR REPLACE PROCEDURE

 raise_salary(E IN NUMBER, AMT IN NUMBER, S OUT NUMBER)

 IS

 BEGIN

 UPDATE emp SET sal=sal+AMT

 where eid=E;

 commit;

 SELECT sal INTO S FROM emp WHERE eid=E;

 END;

 /

Result:

Now follow steps to assign one more variable and how much salary is incrementing

select * from emp;

Result:

Or

Print updated salary by using declared variable

Experiment 10: Usage of Cursors

Whenever DML statements are executed, a temporary work area is created in the system

memory and it is called a cursor. A cursor can have more than one row, but processing wise only

1 row is taken into account. Cursors are very helpful in all kinds of databases like Oracle, SQL

Server, MySQL, etc. They can be used well with DML statements like Update, Insert and

Delete. Especially Implicit cursors are there with these operations.

In PL/SQL, two different types of cursors are available.

 Implicit cursors

 Explicit cursors

Implicit cursors

Orcale provides some attributes known as Implicit cursor's attributes to check the status of DML

operations. Some of them are: %FOUND, %NOTFOUND, %ROWCOUNT and %ISOPEN.

Let us practice these commands with previous emp table

declare

cursor1 emp.eid%type;

begin

 cursor1:= &eid;

delete from emp where eid=cursor1;

if SQL%found then

dbms_output.put_line('record deleted');

else

dbms_output.put_line(' no record');

end if;

commit;

end;

 /

Enter value for eid: 3

old 4: cursor1:= &eid;

new 4: cursor1:= 3;

Result:

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created

on a SELECT Statement which returns more than one row.

SQL> declare

 2 cursor c1 is select name, sal from emp;

 3 vname emp.name%type;

 4 vsal emp.sal%type;

 5 begin

 6 open c1;

 7 loop

 8 fetch c1 into vname, vsal;

 9 exit when c1%notfound;

 10 dbms_output.put_line(vname||' '||vsal);

 11 end loop;

 12 close c1;

 13 end;

 14 /

Result:

	Introduction:
	Example
	Insert Anomaly

